3 Comments

Excellent series! Thank you for compiling it. You have an excellent narration voice.

Expand full comment

I just read this in response to dendrite formation in LIBs. Your thoughts? "Lithium dendrite formation is strongly dependent on the surface nature of lithium anodes," says study author Professor Yong Min Lee from South Korea's Daegu Gyeongbuk Institute of Science and Technology (DGIST). "A crucial strategy for LMBs (lithium-metal batteries), therefore, is to build an efficient solid-electrolyte interface (SEI) at the lithium surface."

Lee and his colleagues have approached this problem by using lithium metal powder as a starting point, which creates a higher surface area and enables the creation of thin and wide electrodes. One shortcoming of this technique, however, has been the uneven nature of the surface, which again leads the battery to failure.

The solution, the DGIST scientists have found, may lie in the addition of lithium nitrate. Pre-planting the compound during the fabrication process allowed the team to create ultra-thin lithium-metal anodes with a smooth and uniform interface layer on the surface. This proved to keep the battery stable over 450 charging cycles, in which it retained 87 percent of its capacity and exhibited a coulombic efficiency of 96 percent.

"We expect that pre-planting lithium stabilized additives into the LMP electrode would be a stepping-stone towards the commercialization of large-scale lithium-metal, lithium-sulfur, and lithium-air batteries with high specific energy and long cycle life," says Lee.

The research was published in the journal Advanced Energy Materials."

Expand full comment

Long Term Storage is a bottleneck. What about the compressed air w/turbine route that was discussed a while back?

Expand full comment